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Challenges dealing with hyperspectral data

« Modern hyperspectral sensors have thousands of channels

— AIRS: 2378
- CriSs: 1305
— NAST-I: 8632
— |ASI: 8461

« Commonly used methods for dealing with large amount of channels
— Channel selection
* According to information content (Clive Rodgers)
* Used by IASI, NAST-I, AIRS
— Sub-bands
» Good for chemical species retrievals
e Used by TES
— Superchannels
* Uses smaller number of channels to capture information from measurements
* Optran AIRS
+ |ASI

 Perform radiative transfer calculation in transformed EOF space
— Principal Component base Radiative Transfer Model (PCRTM)
— Used for NAST-I



Radiative Transfer Equation Infrared Spectral
Region

« Monochromatic Radiance needs to be vertically integrated:
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— The first term is the surface emission

— The second term is the upwelling thermal emission
— The third term is the reflected downwelling radiation
— The last term is the reflected solar radiation

« Channel radiance is a spectral integral of monochromatic radiances:
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Description of PCRTM

« PCRTM is not a channel-based RTM
— predicts PC scores (Y) instead of channel radiances (R)
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* The relationship is derived from the properties of eigenvectors and instrument line
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 Channel radiances (or transmittances ) can be obtained by multiplying the PC
scores with pre-stored Principal Components (PCs):
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Description of PCRTM (continued)

Y is anon-linear function of atmospheric state
— Can be thought as super channels

— contains essential information about the spectrum
U captures spectral variations from channel to channel
— Capture details on instrument functions
— does not change from one spectrum to another
— No need to include it in inversion process
Y can be predicted from monochromatic radiances directly
— Linear relationship due to the properties of U and ¢
— More than an order of magnitude reduction in dimension
Jacobian can be calculated in EOF domain directly
— Great advantage to perform retrieval in EOF domain
RT done monochromatically at very few representative frequencies
— Easy coupling with multiple scattering models
Can efficiently deal with any instrument line shape functions
— €.g ILS with negative side lobes



Forward Model Flowchart
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Radiative Transfer Calculation is Simple

Radiative Transfer coding is very simple (see example for
calculating upwelling radiances):
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Examples of PCRTM Jacobian for AIRS Instrument
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Comparison of Observed AIRS Radiance and

PCRTM Calculated Radiance
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Comparison of NAST-I Observation with PCRTM

NAST-I Radiance
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Location of Clear AIRS Observation
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Differences between AIRS Observed and PCRTM-
Calculated Spectra

STDEV Between PCRTM and AIRS Observed Radiances
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Comparison of PCRTM Jacobian with other forward
model (thanks to Roger et al.)
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Comparison of PCRTM Jacobian with other forward
model (Thanks to Roger et. al.)
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Inversion for atmospheric profile

 Retrieval algorithm based on optimal estimation

Xn+1 o xa = (KTS;1K + Al + 8;1)_1KTS;1[(yn _Ym) + K(xn o xa)]
— Levenberg Marquardt method used to handle non-linearity
— Climatology background and covariance matrix as constraints
— Either climatology or regression as first guess

« Time consuming to perform physical retrieval using all channels
— 3 RT model generated for NAST-I (PFAST, OSS, PCRTM)

Retrieval Configuration

/Matrix Dimensions Radiance/Prof

Y 8632

X 100

K 8632x100
St 8632x8632

S 100x100




EOF transformation of Observed Radiances
Reduces Inversion Time

Y :rad U T % Yrad

PC-R

prof K . :rad U T x prof Krad

EOF transformation converts observations (y,,q) into PC scores (Ypc.r)
Reduce dimension for K and S,*

Reduce forward model computational time

Reduce matrix multiplication time

PCRTM provides both Y and K in EOF space directly
— No need to perform EOF transformations of Y and K at each iteration
— Allinformation from measurements used in inversion

Retrieval Configuration

) . . Radiance PC Score/Profile
/Matrix Dimensions

Y 100

X 100

K 100x100
St 100x100

S 100x100
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Use subset of Channels may not be optimal

 Use subset of channels also reduces computational time
— Reduces dimensions of Y, K, and S,
— Reduces forward model time
« Sub-optimal
— Uses less than 4% of all available channels (300 channels out of 8632)
— More susceptible to noise
— What if the chosen channel has large spectroscopic error?

Retrieval Configuration

) . . Selected Radiance/Profile
/Matrix Dimensions

Y 300

X 100

K 300x100
St 300x300

S 100x100




EOF transformation of state vector reduces
Inversion time further

PC-P >_<’ _PC—P)‘(' __Prof U T 5 prof )_('
a =

PC-P __Prof Prof
Kecr=" Kpepgx U

Eigenvectors generated from climatological atmospheric profiles
Regularize the retrieval

Make S, less singular for highly correlated levels

Minimize vertical level instability in the retrieval

Much smaller matrix dimension for (K'S,*K + 41+ S,4)*

Retrieval Configuration

/Matrix Dimensions Radiance/Profile PC

Y 100
X 32
K 100x32
St 100x100

S 32x32




Advantages of PCRTM Retrieval Methodology

All channels included
— PC scores contains information from all channels
The dimension of S, is much smaller
— Noise correlation included
» Good to handle interferometer with strong apodization functions
* Good to include correlated forward model errors
* Good to include correlated bias correction covariance
The dimension of S, is much smaller
— Inversion is faster
— EOF transformation stabilize state vector inversions
— Easy to increase state vector size when multiple pixels are used
PCRTM provides K and Y in PC domain directly
— No need to convert Jacobian and radiance to PC space at each iteration
— Big computational saving
Fast speed and small matrix sizes are good for
— Cloud handling
— Use spatial and temporal information

Retr. Config/Matrix Dim. Radiance/Prof Subset Radiance/Prof Rad PC/ Prof PC
Y 8632 300 100
X 100 100 32
K 8632x100 300x100 100x32
S,* 8632x8632 300x300 100x100
S, 100x100 100x100 32x32
Time for calc. Kand Y ~2 sec 0.1sec 0.02 sec
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Application of PCRTM to NAST-I Retrieval

100 Radiance PC used

32 parameters retrieved:
— 1 surface skin temperature
— 19 Temperature EOF
— 8 moisture EOF
— 4 0zon EOF
Emissivity fixed
— Ocean emissivity= measured values from JH database
— Land emissvity
» either setto 0.98 (very approximate)
e oOr settoregression generated emissivity
Background covariance generated from NOAA88 database
— Global variations
Retrieval starts from global climatology
— Will try regression first guess later
Levenberge-Marguardt non-linear inversion with climatology background
constraint included
— Very robust
— Converges in 3-4 iteration



PCRTM Retrieved Ts, PWV, T and RH (09/09/2004)
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Cloud Properties from NAST-I Standard Regression
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~Altitude (km) ~Altitude (km)

~Altitude (km)

Time Series of Vertical Profiles from PCRTM
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Vertical Temperature and RH variations from
Radosonde and LIDAR
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Comparison of PCRTM EOF Retrieved Profiles with
Radiosonde and LIDAR
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Application of PCRTM EOF retrieval algorithm to
EAQUATE NAST-I Data

« Upper panel: Mean NAST-l and PCRTM radiances
« Middle: RMS difference between NAST-I and PCRTM fitting
 Bottom: Mean difference between NAST-l and PCRTM
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Summary and Conclusions on PCRTM

 Physical parameterization

— The radiance variation as a function of T, H,0, O,, CH,, N,O, CO, T, €, p, Sec (®), P.....
Is captured via monochromatic RT calculations

» PC score predicted by simple a linear model
— The redundant spectral information is captured via EOF representation
* Can deal with any ILS or SFR

— Super channel magnitudes are a linear combination of a few hundred monochromatic
radiances

— Channel radiances are a linear combination of EOFs with super channels as weights!
 Provides forward model and Jacobians in both spectral and EOF domain
— No need to select sub-set of channels
— Small dimensions, fast speed
— Correlated noise and error sources can be included
« A preliminary application of PCRTM to NAST-I data show good results
— Will be tested with more NAST-| datasets
— Further improvements will be made
» CO,CH4 and N20O retrievals
» Surface emissivity retrievals
» Retrieval under cloudy condition
* Characterize forward model errors and include them in retrievals
« PCRTM has good potential for hyperspectral remote sensing
— |ASI, NWP data assimilation, cloud parameter retrievals
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